
Journal of Computational Physics 209 (2005) 340–353

www.elsevier.com/locate/jcp
Automatically generating Feynman rules for improved
lattice field theories

A. Hart a,*, G.M. von Hippel b,c, R.R. Horgan b,*, L.C. Storoni b

a School of Physics, University of Edinburgh, King�s Buildings, Edinburgh EH9 3JZ, UK
b DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

c Department of Physics, University of Regina, Regina, SK, Canada S4S 0A2

Received 22 November 2004; accepted 2 March 2005

Available online 23 May 2005
Abstract

Deriving the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially

when improvement terms are present. This physically important task is, however, suitable for automation. We describe

a flexible algorithm for generating Feynman rules for a wide range of lattice field theories including gluons, relativistic

fermions and heavy quarks. We also present an efficient implementation of this in a freely available, multi-platform

programming language (PYTHON), optimised to deal with a wide class of lattice field theories.

� 2005 Elsevier Inc. All rights reserved.

PACS: 11.15.Ha; 12.38.Gc

MSC: 81-04; 81T13; 81T15; 81T18; 81T25; 81V05; 65S05; 41A58

Keywords: Lattice field theory; Feynman rules; Perturbation theory
1. Introduction

Non-abelian quantum field theories such as QCD are believed to explain much of particle physics, at least

at energy scales probed by current particle accelerators. Perturbative expansions of the theory do not, how-

ever, converge at hadronic energy scales. That, and the belief that non-perturbative physics may also con-

tribute to certain states, makes the lattice regularisation of quantum field theories extremely important.

Inherently non-perturbative calculations can then be carried out using Monte-Carlo simulations.
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.03.010

* Corresponding authors. Tel.: +44 131 650 5264 (A. Hart).

E-mail address: a.hart@ed.ac.uk (A. Hart).

mailto:a.hart@ed.ac.uk

A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353 341
Dividing space and time into a grid with lattice spacing a, however, excludes ultraviolet modes with mo-

menta of p/a or higher. A renormalisation programme is, therefore, required to connect lattice measure-

ments to their continuum counterparts. Such renormalisation factors are particularly important for

QCD matrix elements and fixing the couplings and masses present in the Lagrangian. Renormalisation

is also needed to determine the strong coupling as and to relate the lattice regularisation scale Klat to the
more familiar KQCD. It is also used to ‘‘improve’’ the lattice actions in an attempt to reduce the discretisa-

tion errors at given lattice spacing.

In a limited number of cases, the renormalisation constants can be determined using non-perturbative

techniques. Results at finite lattice spacing, however, can depend upon the method used (e.g. [1]), and

non-perturbative methods do not cope well with mixing of operators under renormalisation. For these rea-

sons, there is a strong interest in lattice perturbation theory.

Given that perturbation theory fails in low energy QCD, we may ask why it should work on the lattice.

An argument for its use is given in [2]: the renormalisation factors may be thought of as compensating for
the ultraviolet modes excluded by the lattice regulator. For typical lattices, a [0.1 fm and the excluded

modes have momenta in excess of 5 GeV. At these scales, the running QCD coupling as is small enough

that perturbation theory should rapidly converge. The wide range of results recently reviewed in [3,4] show

perturbation theory can be used for a large range of lattice QCD processes. It is an assumption that non-

perturbative effects do not contribute on these short length scales. In a few cases, we can test this directly by

comparing high order perturbative calculations with Monte-Carlo simulations at a range of weak couplings

[5–9]). The non-perturbative contributions to the studied quantities are very small. Other comparisons, such

as [1], cannot distinguish non-perturbative effects from higher loop perturbative corrections. It therefore
remains that lattice perturbation theory provides the only systematically improvable method for determin-

ing the full range of renormalisation constants [3].

As in the continuum, the calculation of lattice Feynman diagrams is a two stage process. The lattice ac-

tion and operators must first be Taylor expanded to give the propagators and vertices that form the Feyn-

man rules (which we refer to as the ‘‘vertex expansion’’ stage). Following this, these rules must be used to

construct and evaluate Feynman diagrams, possibly after algebraic simplification (the ‘‘Feynman diagram

evaluation’’ stage).

The main obstacles in the latter task are the presence of Lorentz symmetry violating terms at finite lattice
spacing and the complications of replacing momentum integrals by discrete sums. The calculations are,

therefore, usually done using computer programs like VEGAS [10], FORM [11] or other proprietary mathe-

matical packages.

Expanding the lattice action and operators to obtain Feynman rules is far more complicated than in the

continuum. Firstly, lattice gauge fields are elements of the Lie group rather than the algebra of the gauge

group. We must therefore expand exponentials of non-commuting fields to obtain the Feynman rules. Sec-

ondly, modern lattice theories contain a large number of irrelevant (in the renormalisation group sense of

the word) terms chosen to improve specific aspects of the Monte-Carlo simulation, such as the rate of ap-
proach to the continuum or chiral limits of QCD.

There is, however, no unique prescription for these terms, and the choice depends on that quantities we

are most interested in simulating. As a result, a large number of actions and operators are currently in use.

Although the differences may be subtle, each choice provides a separate regularisation of QCD with its own

set of renormalisation constants and, most relevantly here, Feynman rules. At present, the complications of

the expansions has meant that the availability of renormalisation factors has lagged far behind develop-

ments in lattice improvement. In many cases, this has restricted the physical predictions obtained from

the simulations.
As a result, there is a strong need for an automated method for deriving lattice Feynman rules in a flex-

ible way for a range of different theories. The generation should be rapid enough not to constrain our

choice of action, and to avoid errors we should be able to specify the action in a compact and intuitive

342 A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353
manner (such as using nested link smearing prescriptions). The evaluation of the Feynman diagrams can be

computationally intensive, and may be carried out on costly supercomputing facilities. Parsimony and soft-

ware availability dictate that the rules should be separately calculable in advance, and rendered in a ma-

chine readable format that can be copied to any computer for later Feynman diagram evaluation.

In this paper we describe such a method.
Automated expansion of lattice actions1 is not a new concept, having been described for gluonic actions

by Lüscher and Weisz in 1986 [12]. An implementation of this has been used in [13–15]. A similar method is

employed in [16]. We present here a new algorithm suited to expansion of not only gluonic actions, but also

those of complicated relativistic fermionic actions and heavy quarks, such as in NRQCD. As in [12], the

expansion is independent of the boundary conditions allowing, for instance, the use of twisted boundary

conditions to regulate infrared divergences in a gauge-invariant manner [17,18] or otherwise change the dis-

crete momentum spectrum [19]. We also describe details of an implementation of this algorithm which we

have used for calculations of the renormalised anisotropy in gauge theories [20,21], to study the mean link
in Landau gauge for tadpole improvement [9] and to measure the electromagnetic decays of heavy quark

systems using NRQCD [22,23]. The code is flexible and can be easily extended to cope with a full range of

problems, some of which we discuss in Section 5. We are happy to share this code with interested readers.

The structure of the paper is as follows. Our method clearly stems from [12] and in Section 2 we review

their theory and notation. The algorithm itself differs markedly from [12], not least in being able to deal

with fermionic actions, and is described in Section 3. In Section 4, we turn to implementation of the algo-

rithm, explaining the steps taken to ensure the code can cope with the more complicated theories. Whilst the

notation is tilted towards our version in the PYTHON programming language, the optimisations are clearly
applicable to any realisation of the algorithm. We present our conclusions in Section 5. Technical details of

the data structures employed are relegated to Appendices.
2. The lattice

A cubical space-time lattice K in D dimensions consists of sites labelled by a vector x 2 K with compo-

nents that are integer multiples of a lattice spacing a, which we will set to be one (a (bare) lattice anisotropy
can be introduced through rescaling of coupling constants in the action [20]). The directions of the lattice

axes are labelled l 2 {1,2, . . . ,D}. If el is a right-handed basis set consisting of unit vectors, we define cor-

responding backward vectors: e�l = �el.
A path consisting of l links starting at site x can be specified on the lattice by an ordered set of signed

integers, si 2 [�D, . . . ,�1,1, . . . ,D]
1 We
Lðx; y;sÞ � fx; y;s ¼ ½s0; s1; . . . ; sl�1�g. ð1Þ

The jth point on the path is
zj ¼
x; j ¼ 0;

zj�1 þ aesj�1
; 0 < j 6 l

(
ð2Þ
and the endpoint of the path is y ” zl.
For a periodic lattice with Ll sites in the l direction (and volume V ¼

Q
lLl) the momentum vectors are
k ¼ 2p
a

�k1
L1

; . . . ;
�kD
LD

� �
; 0 6 �kl < Ll; �kl 2 Z ð3Þ
shall understand the term ‘‘actions’’ to include measurement operators from now on.

A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353 343
and
P

k stands for sums over the integers �kl. The Fourier expansion of a field / is
~/ðkÞ ¼
X
x

e�ik�x/ðxÞ; /ðxÞ ¼ 1

V

X
k

eik�x~/ðkÞ. ð4Þ
Different boundary conditions (e.g. twisted [9,12,20]) change the colour factors and momentum spectrum.

Since neither are used explicitly in the vertex expansion below, the same reduced vertex function output can

be used in each case.

2.1. Matter fields

We now turn to the description of lattice fields. The notation follows [12].
The gauge field associated with a link is Ul>0(x) 2 SU(N). Let U denote the full configuration of such

links. The perturbative gauge potential associated with the link is defined through
Ul>0ðxÞ ¼ exp agAl xþ a
2
el

� �� �
¼
X1
r¼0

agAlðxþ a
2
elÞ

� �r
r!

; ð5Þ
where g is the bare coupling constant. The potential Al 2 alg(SU(N)) is associated with the midpoint of the

link. Expanding in the anti-Hermitian generators of SU(N):
Al ¼ Aa
lT a; ½T a; T b� ¼ �fabcT c; TrðT aT bÞ ¼ �1

2
dab. ð6Þ
We define U�lðxÞ ¼ U y
lðx� aelÞ.

Quark fermion fields w(x) transform according to the representation chosen for the generators Ta. From

now on we assume this to be the fundamental representation (other choices will affect the colour factors,

but not the underlying expansion algorithm).
The Wilson line L(x,y,U) on the lattice associated with the path Lðx; y;sÞ is a product of links
Lðx; y;UÞ � L : U ¼
Yl�1

i¼0

UsiðziÞ ¼
Yl�1

i¼0

exp sgnðsiÞagAjsij zi þ
a
2
esi

� �h i
. ð7Þ
As all actions and operators can be written as a sum of Wilson lines (possibly terminated by fermion fields
that are not themselves expanded), our goal is to efficiently render L as a Taylor series in the gauge potential

in momentum space
Lðx; y;AÞ ¼
X
r

ðagÞr

r!

X
k1;l1;a1

. . .
X

kr ;lr ;ar

~A
a1
l1
ðk1Þ . . . ~A

ar
lr
ðkrÞ � V rðk1; l1; a1; . . . ;kr; lr; arÞ. ð8Þ
We can write the vertex functions Vr as
V rðk1; l1; a1; . . . ;kr; lr; arÞ ¼ Crða1; . . . ; arÞYL
r ðk1; l1; . . . ;kr; lrÞ. ð9Þ
The matrix colour factor Cr plays the role of the Clebsch–Gordan factor
Crða1; . . . ; arÞ ¼
Yr
i¼1

T ai . ð10Þ
Up to differences in the colour trace structure of the action (e.g. a mixed fundamental/adjoint gauge ac-

tion, and discussed in Appendix B), the Cr are path independent. We can therefore represent the vertex

functions more efficiently by calculating just the expansion of the reduced vertex functions, YL
r (with an

appropriate description of the colour trace structure where ambiguous). The reduced vertex function can

be written as a sum of monomials

344 A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353
YL
r ðk1; l1; . . . ;kr; lrÞ ¼

Xnr
n¼1

fn exp
i

2
k1 � vn1 þ � � � þ kr � vnr
� �

. ð11Þ
For each combination of r Lorentz indices we have nr terms, each with an amplitude f and the locations v of
the r factors of the gauge potential. To simplify this expression, we have suppressed the dependence of f, vni
and nr on the Lorentz structure. To construct Y for given momenta, we apply the k�s to the position vectors

of all monomials with the correct Lorentz indices.

The v�s have been drawn from the locations of the midpoints of the links in the pathL. To avoid floating

point ambiguities, it is therefore more convenient to express the components of all D-vectors as integer mul-

tiples of a
2
(accounting for the factor of 1

2
in the exponent).

2.2. Realistic actions: the fermion sector

We begin our discussion of realistic lattice actions with the fermion sector. The most general gauge- and

translation-invariant action can be written as
SF ðw;UÞ ¼
X
x

X
W

hW�wðxÞCWW ðx; y;UÞwðyÞ. ð12Þ
It consists of Wilson lines W defined by open paths Wðx; y;sÞ. Associated with each path is a coupling con-

stant hW and a spin matrix CW (which might be unity).
Using the convention that all momenta flow into the vertex, the perturbative expansion is
SF ðw;AÞ ¼
X
r

gr

r!

X
k1;l1;a1

. . .
X

kr ;lr ;ar

~A
a1
l1
ðk1Þ . . . ~A

ar
lr
ðkrÞ �

X
p;q;b;c

~�w
b
ðpÞV F ;rðp; b;q; c;k1;l1; a1; . . . ;kr;lr; arÞ~w

cðqÞ.

ð13Þ

The Euclidean Feynman rule for the r-point gluon–fermion–anti-fermion vertex is �grVF,r, where the

symmetrised vertex is
V F ;rðp; b;q; c;k1; l1; a1; . . . ;kr;lr; arÞ ¼
1

r!

X
r2Sr

r � CF ;rðb; c;a1; . . . ; arÞr � Y F ;rðp; q;k1; l1; . . . ;kr; lrÞ; ð14Þ
where r is an element of the permutation group of r objects, Sr, applied to the gluonic variables and nor-

malised by the factor of (r!). The reduced vertex Y F ;r ¼
P

WhWYW
F ;r is the sum of contributions from pathsW.

For all simple cases, the Clebsch–Gordan colour factor is the matrix element
CF ;rðb; c;a1; . . . ; arÞ ¼ ðT a1 . . . T arÞbc. ð15Þ

The symmetrisation and calculation of colour factors will be carried out separately when the vertex func-

tions are reconstructed in a Feynman diagram calculation.

The reduced vertex function has the structure
Y F ;rðp; q;k1; l1; . . . ;kr; lrÞ ¼
Xnr
n¼1

Cnfn � exp
i

2
p � xþ q � yþ k1 � vn1 þ � � � þ kr � vnr
� �� �

. ð16Þ
As we do not use explicit representations of the spin matrices, it is important that each monomial retains

the correct spin dependence Cn.

2.3. Realistic actions: the gluon sector

A general gluonic action is
Sðw;UÞ ¼
X
x

X
P

cPReTr P ðx; x;UÞ½ �; ð17Þ

A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353 345
built of Wilson loops P defined by closed paths Pðx; x;sÞ, each with coupling constant cP. The perturbative
action is
SGðAÞ ¼
X
r

gr

r!

X
k1;l1;a1

. . .
X

kr ;lr ;ar

~A
a1
l1
ðk1Þ . . . ~A

ar
lr
ðkrÞ � V G;rðk1; l1; a1; . . . ;kr; lr; arÞ. ð18Þ
The Euclidean Feynman rule for the r-point gluon vertex function is (�grVG,r), and the vertex VG,r is [12]
V G;rðk1; l1; a1; . . . ;kr; lr; arÞ ¼
1

r!

X
r2Sr

r � CG;rða1; . . . ; arÞr � Y G;rðk1; l1; . . . ;kr; lrÞ. ð19Þ
The reduced vertex Y G;r ¼
P

PcPY
P
G;r is the sum of contributions from paths P. As before, the (r!) factor

normalises the symmetrisation. Y P
G;r can be expanded as
Y P
G;rðk1; l1; . . . ;kr; lrÞ ¼

Xnr
n¼1

fn exp
i

2
k1 � vn1 þ � � � þ kr � vnr
� �� �

. ð20Þ
In most cases, we expect the lattice action to be real. For every monomial in Eq. (20), then, there must be a

corresponding term
ð�1Þrf �
n exp�

i

2

X
i

ki � vni

 !
. ð21Þ
We can therefore speed up the evaluation of the Feynman rules by removing the latter term, and replacing

the exponentiation in Eq. (20) with ‘‘cos’’ for r even, and with ‘‘i sin’’ for r odd. Clearly, we must identify to

which terms this has been applied. This can either be done by recognising conjugate contours in the action
(e.g. S ¼ 1

2
Tr½P þ P y�) and expanding only one, or by attaching a flag to each monomial to signal the reduc-

tion (as discussed in Section 4).

If, in addition to the reality, the action has the form Eq. (17) with a single trace in the fundamental rep-

resentation, the colour factors are
CG;rða1; . . . ; arÞ ¼ 1
2
TrðT a1 . . . T arÞ þ ð�1ÞrTrðT ar . . . T a1Þ½ �. ð22Þ
When symmetrising, a lot of the terms have similar Clebsch–Gordan factors:
r � CG;r ¼ vrðrÞCG;r; where vrðrÞ ¼
1 for r a cyclic permutation;

ð�1Þr for r the inversion.

�
ð23Þ
We can therefore partly symmetrise the vertex over Zr (the subgroup of cyclic permutations and inversion)

at the expansion stage. The vr(r) go into the amplitudes of the new terms coming from the partial

symmetrisation:
V G;rðk1; l1; a1; . . . ;kr; lr; arÞ ¼
X

r2Sr=Zr

r � CG;rða1; . . . ; arÞ � r � Y 0
G;rðk1; l1; . . . ;kr; lrÞ;

Y 0
G;r ¼

X
P

r2Zr

cPvrðrÞr � Y P
G;r.

ð24Þ
The advantage of doing this is that many of the extra monomials are equivalent, and we can therefore cut

down significantly the number of exponentiation operations required to construct VG,r. The number of

remaining symmetrisation steps (to be carried out in the Feynman diagram code) is the number of cosets
in Sr=Zr (one for r 6 3, three for r = 4, etc.).

346 A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353
2.4. Diagram differentiation

There are many cases where Feynman diagrams need to be differentiated with respect to one or more

momenta. Whilst this can be done numerically using an appropriately local difference operator, this can

lead to numerical instabilities.
It is clear from Eq. (11), that we can easily construct the differentiated Feynman vertex. Let the momen-

tum component we wish to differentiate with respect to be qm. We first construct a rank r object

s = [s1, . . . ,sr] which represents the proportion of momentum q in each leg of the Feynman diagram.

Momentum conservation dictates
P

isi ¼ 0. For instance, for a gluon 3-point function with incoming mo-

menta (p,�p + 2q,�2q), we would have s = [0,2,�2]. The differentiated vertex is
d

dqm
YL

r ðk1; l1; . . . ;kr; lrÞ ¼
Xnr
n¼1

ifn
2

s1vn1;m þ � � � þ srvnr;m
� �

� exp
i

2
k1 � vn1 þ � � � þ kr � vnr
� �

ð25Þ
and so on for higher derivatives. We may therefore simultaneously calculate as many differentials as we

need for the cost of one exponentiation. If this momentum expansion is placed into an appropriate data

structure with overloaded operations, it is easy to create the Taylor series for a Feynman diagram by mul-

tiplying the vertex factors together. For examples of such codes, see [24].
It may also be necessary to differentiate diagrams with respect to parameters in the action, which may be

present in different multiples in the amplitude of the monomials. Depending on the situation, we can sep-

arately expand parts of the action containing different powers of the parameter. Alternatively, we can use a

single expansion and append a label to each monomial that records how many powers of the given param-

eter are contained in the amplitude. This label is then used in the parameter differentiation in the Feynman

diagram code.
2.5. Recursive path definitions

So far we have assumed that the paths in the action are constructed from single links. This is, of course,

always true but it is often more compact to specify the action as built from composite objects, such as

smeared links, giving a separate prescription for the link smearing. For instance, the smeared link might

be defined as the gauge covariant, weighted sum of the link and its adjoining staples
W lðxÞ ¼ c0UlðxÞ þ c1
X
�m

jmj6¼l

U mðxÞUlðxþ emÞU y
mðxþ elÞ; ð26Þ
where the coefficients c0,1 define the smearing method and are chosen to optimise certain aspects of the

Monte-Carlo simulation. The smearing may also be defined recursively, with smeared links inserted into

additional smearing recipes. Examples include the ‘‘HISQ’’ improved staggered fermions discussed in

[25], where the links are first ‘‘FAT7’’, then ‘‘ASQ’’ smeared. Rather than multiplying out the paths in

the action to give a large sum of tangled paths built from links, it is more convenient to reflect the nested
improvement structure in the expansion algorithm itself.

This is done by first defining the mapping U! W as a sum of paths as in Eq. (1). For instance, Eq. (26)

is represented by path {x,x + el; [l]} with coupling c0 plus {x,x + el; [m,l,�m]}, {x,x + el; [�m,l,m]} with

coupling c1. Call the smearing definitions W. An action is then compactly specified by a path P of com-

posite objects. These are in turn are defined by an ordered list ½W1;W2; . . . ;Wn� representing each step

of nested improvement. The full field is then defined by the recursion:

A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353 347
W1 : U ¼ W 1ðUÞ;
W2 : W 1ðUÞ ¼ W 2ðW 1ðUÞÞ;
W3 : W 2ðUÞ ¼ W 3ðW 2ðUÞÞ;

..

.

Wi : W i�1ðUÞ ¼ W iðW i�1ðUÞÞ;

..

.

P: W nðUÞ ¼ P ðW nðUÞÞ.

ð27Þ
3. An expansion algorithm

In this section, we present a new algorithm for carrying out the Taylor expansion of lattice actions in a

manner suited to computer implementation.

We start by defining an object that represents a single term in the Taylor expansion in Eq. (11). We call
this an ‘‘entity’’ E, and it is an ordered list
E ¼ ðl1; . . . ; lr;x; y;v1; . . . ; vr;f Þ. ð28Þ

The order of the entity is r. For instance, a single link comes from a path L ¼ f0; el;½l�g, and the rth term

in its expansion in Eq. (5) is represented as
Er ¼ ðl; . . . ; l|fflfflfflffl{zfflfflfflffl}
r terms

;0; 2el; el; . . . ; el|fflfflfflfflfflffl{zfflfflfflfflfflffl}
r terms

;1Þ. ð29Þ
Note that in units of a
2
the endpoint is 2el and the midpoint el. The reduced vertex function is a set of all the

entities of all orders in the expansion, and we call this a ‘‘field’’ F = {E}.
In practise, we build a Wilson line by concatenating smaller paths (the smallest being the link). We there-

fore define the multiplication of two fields so as to give the Taylor expansion of the resulting, longer con-

tour. The product is, therefore, the ordered product of each entity from the first contour with every entity

from the second:
F ðL1 �L2Þ ¼ F ðL1Þ � F ðL2Þ;
¼ Ei � Ej 8Ei 2 F ðL1Þ; Ej 2 F ðL2Þf g. ð30Þ
To keep gauge covariance, entity Ej must be translated to start at the end point of Ei. The order of the prod-

uct entity is the sum of those of the constituents. Further details are given in Appendix C.

Addition of fields should represent the expansion of a sum of gluonic paths. We therefore simply com-

bine the lists of entities
F ðL1 þL2Þ ¼ F ðL1Þ þ F ðL2Þ. ð31Þ

In general, F will be a redundant representation of the polynomial containing two or more equivalent enti-

ties. As each entity represents a monomial which requires a computationally expensive exponentiation, we

construct a compression operation which compares all pairs of entities in F and combines them if they are

equivalent
½Ei;Ej� ! ½E� if Ei � Ej; where E ¼ li
1; . . . ; l

i
r;x

i; yi;vi1; . . . ; v
i
r;f

i þ f j
� �

. ð32Þ
Assuming we have a translationally equivalent theory, entities need only be equivalent up to translation by

a constant vector. For details, see Eq. (C.4).

348 A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353
4. A practical implementation

In this section, we describe an implementation of the algorithm in a programming language called

PYTHON. The PYTHON interpreter is freely available for a wide range of computational platforms at [26].

The complexity of some physical actions (notably high order NRQCD) require the implementation to
be CPU and memory efficient. This can be achieved in PYTHON with appropriate programming techniques,

and without sacrificing the object orientation and superior list handling features of the language.

As a first step, we choose a maximum order for the Taylor expansion. Any entity of higher order is dis-

carded. The entities and all sub-lists (including D-vectors) are encoded as ‘‘tuples’’, which are immutable list

objects to which the native hash function can be applied.

To minimise the size of the dictionary, it is important that the field does not contain entities that are

equivalent. We choose data structures for the entity and field specifically to prevent this. Firstly, we exploit

translational invariance of the action to arrange that all paths start at the origin (x = 0). Entity equivalence
in Eq. (C.4) then follows from an item by item tuple comparison.

This comparison is most efficiently done using a hash table (i.e., an associative array). The PYTHON ‘‘dic-

tionary’’ is a native implementation of this, where a ‘‘key’’ indexes an ‘‘object’’. In our implementation,

each dictionary entry represents a monomial in the reduced vertex function. The key is a list of all infor-

mation in the entity bar the amplitude, which becomes the object indexed by this key. Searching for equiv-

alent entities now amounts to enquiring if the key already exists in the dictionary. As all key entries are

integer, we do not need to worry about machine precision issues. We can significantly speed up the hashing

by omitting the now redundant x = 0 from the entity data structure. Independently, a moderate perfor-
mance gain can come from archiving the hash values for each entity.

On a technical note, we find a slight speed-up associated with implementing the field as a two-level dic-

tionary. The upper level keys are tuples of Lorentz indices. These each index a lower level dictionary of all

entities with the appropriate Lorentz structure.

If, on inserting a new entity into a field structure, an equivalent entity exists, rather than adding the new

item to the field its amplitude is merely combined with that of the existing entity. If the new amplitude

f i + f j = 0, the entry is removed. This test is robust for integer arithmetic. Otherwise, the absolute value

is compared to some tolerance, e.g. 10�8. We may worry about rounding errors: near ki = 0 the reduced
vertex monomials are all adding in phase, and the deleted amplitudes may add to give a significant contri-

bution. We therefore use a tolerance smaller than is finally required for the path expansion. As a last step

only, we apply the final tolerance cut. The numerical values of the intermediate and final tolerances are

found by trial and error, looking for robustness in the number of terms in the expansion. It is worth point-

ing out that PYTHON carries out all floating point arithmetic in double precision.

In the gluonic case of closed, traced contours the endpoint y is physically irrelevant. By ignoring it, we

can identify more entities that are equivalent and further reduce the dictionary size. To find these, for each

entity we impose x = y = 0 whilst translating all the v�s such that v1 ¼ el1 . The field dictionary is then re-
hashed, looking for newly equivalent terms. Of course, care must be taken only to do this as a final step,

and not to then multiply such contours together.

As discussed in Section 2.5, a recursive action definition is more compact and less error-prone. Each

smearing definition (such as ‘‘APE’’ or ‘‘ASQ’’) is predefined, and labelled by a unique string. Each path

in the action is specified by three items: the coupling for this path, a list of signed directions and a list

of link improvement method names. A full action (gluonic or fermionic) is specified by a list of such path

specifications. For each path, the expansion routine is executed recursively to implement Eq. (27), convert-

ing it into a field that is fed to the next level of the nested link improvement. Finally, these fields can be
manipulated or combined, before being output.

In some cases, we need to combine complex conjugate monomials as per Eq. (21). This is most easily

done by noting that E = 2Ereal � E*. We loop over all unprocessed entities E 2 F, inserting �E* into F

A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353 349
and marking E as now processed (and doubling its amplitude). This marking can be done by adding a Bool-

ean flag to the entity data structure in Appendix C.

Once we have the monomials, we have a choice of output format dictated by whether the output is to be

read into the Feynman diagram evaluation code at compile time or run time. The former has the advantage

that the compiler may be able to optimise the construction of the vertex functions; the disadvantage is that
the size of the vertex functions may lead to code that is too long for the compiler to handle. Reading in the

data at run time avoids this, but may in principle lead to slower code. In either case, the PYTHON code can be

easily adapted to produce the correct output format.

As an example, we describe the run time case. The output consists of a single ASCII file for each order of

the perturbative expansion. Each file contains multiple entries, which could be a single line, or multiple lines

for clarity. The entry contains the information in a single entity as whitespace separated values. For later

storage in the Feynman diagram code, it is convenient if the Lorentz indices are represented as a single inte-

ger in base D: nðlÞ ¼
Pr

i¼1ðli � 1ÞDi�1. It is also useful if the entries for given l are consecutively numbered
(although the order does not matter). The file is terminated by a blank entry with n(l) = �1.

In the Feynman diagram code, a set of arrays should be defined to hold the vertex function data. For

languages without allocatable arrays, we can arrange for the PYTHON to write a set of compile time header

files that create arrays of the correct dimensions for a given set of vertex functions.

We use a set of Fortran90 modules to read in the data files, which can serve as a template for other

languages.
5. Conclusions

Simulation of Symanzik and radiatively improved lattice field theory actions has become very popular

in recent years. Associated renormalisation factors (and, indeed, the radiative improvement itself) can be

systematically calculated using lattice perturbation theory. The complicated nature of the improved ac-

tions and operators has, however, contributed to a backlog in this perturbative renormalisation

programme.

Having a flexible method for generating the Feynman rules automatically is crucial to overcoming this
backlog, and permitting a greater range of renormalisation factors to be calculated. This paper provides

just such a method, that is well suited to expanding all sectors of lattice QCD: gluons, relativistic fermions

and heavy quarks. In addition to the Taylor expansion algorithm, an efficient implementation in the

PYTHON programming language is described, exploiting useful features of this language.

Particular strengths of this algorithm include coping with arbitrary spin and colour trace structures in

the action, allowing a nested definition of link improvement and an intuitive way of defining the action

to be expanded.

The code is also very flexible, and can be adapted to deal with most wrinkles met in perturbative
expansion. The first of these is tadpole improvement. Tadpole (or mean field) improvement aims to

speed the convergence of perturbation theory through dividing each link in the action by a factor u

[27]. We can use perturbation theory to calculate u = 1 + d1as + � � � as an expansion in the coupling,

and treat the quantum effects as radiative counterterms in the action with couplings ntdi(as)
i (plus com-

binatoric factors), where nt was the number of factors of links in the path. We can expand the action as

before, but must now do a separate expansion of the radiative counterterms. Consider building an action

from links smeared as in Eq. (26). When we expand Wl(x)Wl(x + el) we will get a link combination

[m,l,�m,m,l,m], and the question is whether such a term should be given a tadpole improvement factor
of u�4 or u�6. The former is more in keeping with the philosophy of mean field improvement, but in a

simulation the latter is more convenient. The procedure, of course, is that the perturbative action should

follow what is used in simulation. Either convention can be followed by assigning to each entity

350 A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353
knowledge of the full length of the path from which it is derived. In the latter case of no cancellation,

these lengths simply add on entity multiplication. In the former case, some directional knowledge must

be maintained to allow factors of u to cancel. Terms with different numbers of tadpole factors should be

grouped separately; for this reason, nt should be included in the key in the PYTHON implementation of

the entities and fields.
This adaptability also makes the expansion algorithm described here useful in, for instance, chiral per-

turbation theory [28] or the double expansion needed for stochastic perturbation theory [6,29].

By describing and making available these algorithms and tools, we hope that lattice field theory calcu-

lations can reach a point where the choice of lattice action is not constrained by the availability (or not) of

renormalisation constants.
Acknowledgments

We are pleased to acknowledge useful discussions with I.T. Drummond and Q. Mason. A.H. is grateful

to the U.K. Royal Society for support.
Appendix A. Spin algebra

Each Wilson line in an action has an associated spin matrix. Where this is not uniformly unity, we must
keep track of which spin matrix applies to each term in the reduced vertex. We do this by adding a single

integer label to the entity list, s. For Dirac gamma matrices 0 6 s 6 15, whilst for Pauli sigma matrices

0 6 s 6 3. By convention, s = 0 is the identity.

When two spin factors are multiplied, the product is proportional to a single element of the spin algebra
sisj ¼ 1
2
½si; sj� þ 1

2
si; sjf g ¼ eks

k for some ek 2 R ðA:1Þ
(with no sum over k). This reduction can be easily encoded in the PYTHON vertex generation code through a

small dictionary where each key (si,sj) indexes a list: [sk, ek].
Appendix B. Pattern lists

A Wilson line may be composed of a number of parts to which separate colour traces may have been

applied. This will affect the value of the associated Clebsch–Gordan coefficient. Physical examples include

the traceless field strength operator, Ulm � TrUlm, and the adjoint Yang–Mills action, TrUlmTrU y
lm. In the

former case, for instance, second order monomials either have colour structure of the form (TaTb)cd or

TrðT aT bÞdcd ¼ � 1
2
dabdcd .

As we do not calculate the Clebsch–Gordan coefficients in the vertex generation program, we need a

method for distinguishing whether given gauge potentials within an entity are untraced, all traced together

or in separate colour traces. This distinction is also important in ensuring we do not compress together enti-

ties with different colour structures. We distinguish these cases by adding an extra entry to the entity called

a pattern list.

A pattern list of order r is x = (x1, . . . ,xr). Each positive integer element xi is associated with the cor-

responding factor of the gauge potential Ai. If Ai has not been traced, xi = 0. All gauge potentials with the

same value of the pattern component are understood to be contained in a single colour trace. For instance,
A1A3Tr(A2A4) would have a pattern list (0,1,0,1).

A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353 351
Applying a colour trace to an entity modifies only the pattern list x! x 0, with
x0
i ¼

1þmaxðx1; . . . ;xrÞ; xi ¼ 0;

xi; xi 6¼ 0.

�
ðB:1Þ
We stress that the actual value of xi has no meaning. It is therefore convenient to arrange at all stages that

the first non-zero element in the list is 1, the second 2, etc. Taking the example above, Tr[A1A3Tr(A2A4)] =

Tr(A1A3)Tr (A2A4) has a relabelled pattern list (1,2,1,2). Gauge invariance precludes application of a trace

to entities for which x 6¼ y (i.e., to contours which are not closed). The SU(N) generators are traceless, so

when a colour trace applies to only one factor of the gauge potential, we may delete the entity (such as when

tracing an entity of order r = 1).
We define multiplication x1

* x2 by
ðxi
1; . . . ;x

i
ri
Þ � ðxj

1; . . . ;x
j
rj
Þ ¼ ðxi

1; . . . ;x
i
ri
;x0

1; . . . ;x
0
rj
Þ; ðB:2Þ
where
x0
k ¼

0; xj
k ¼ 0;

xj
k þmaxðxi

1; . . . ;x
i
ri
Þ; xj

k 6¼ 0.

(
ðB:3Þ
When all elements of x are not 1, the symmetries of Eq. (23) are not present. The group of symmetrisation

operations carried out in the vertex generation code must, therefore, be reduced from Zr, or it may be sim-

pler to postpone all symmetrisation until the Feynman diagram are evaluated for specific momenta.

We note that pattern lists can also be used to label the taking of real or imaginary parts in an action in a

similar way, using positive and negative entries to distinguish the two.
Appendix C. Entity algebra

Taking into account Appendices A and B, an entity E consists of
E ¼ ðl;x; y;v1; . . . ; vr;x;s;f Þ. ðC:1Þ

The colour trace pattern list x and spin index s are optional and need not be included in all situations. The

start site x may also be omitted (see Section 4).
The complex conjugate entity E* has amplitude (�1)rf* and the sign of all D-vectors reversed.

Multiplication by a scalar p 2 C acts only on the amplitude
pE ¼ ðl;x; y;v1; . . . ; vr;x;s;pf Þ. ðC:2Þ

We translate an entity by D-vector c 2 K using
T cE ¼ ðl1; . . . ; lr;xþ c; yþ c;v1 þ c; . . . ; vr þ c;x;s;f Þ. ðC:3Þ

Two entities are said to be equivalent if the lists can be rendered identical under a translation and rescaling:
Ei � Ej iff 9 c 2 K; p 2 C s:t: T cEi ¼ pEj. ðC:4Þ

Non-commutative multiplication of two entities is defined by
E0 ¼ Ei � Ej ¼ ðl0;xi; yj þ C ;vi1; . . . ; v
i
ri
; vj1 þ C ; . . . ; vjrj þ C ;x1 � x2;sk;f 0Þ; ðC:5Þ
i.e., the path from which the second entity was derived is first translated by a vector C = yi � xj, to start

where the first finished. The resulting entity is of order r = ri + rj. The Lorentz list l 0 is the concatenation

of lists li + lj. The spin indices yield si sj = eks
k as per Eq. (A.1). Note the amplitude f 0 ¼ ek rCrif

if j con-

tains a combinatoric factor arising from having separated out the (r!) Taylor expansion factors from the

amplitude in Eq. (8).

352 A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353
The action of the permutation operator r = (r1,r2, . . . ,rr) on a list l yields ðlr1 ; . . . ; lrrÞ. We can apply it

to entities which are closed x = y, simply traced (xi = 1 "i) and where the real part has been taken (to en-

sure Eq. (22) holds)
r � E ¼ ðr � l;x; x;vr1 ; . . . ; vrr ;r � x;s;vrðrÞf Þ; ðC:6Þ

noting in this case that r Æ x ” x. Eq. (23) defines vr(r).

By extension Eqs. (C.2), (C.3) and (C.6), and the colour trace are applied to a field F by operating on
each of its constituent entities E 2 F.
References

[1] T. Bhattacharya, R. Gupta, W.-J. Lee, S.R. Sharpe, Order a improved renormalization constants, Phys. Rev. D 63 (2001) 074505,

Available from: <hep-lat/0009038>.

[2] G.P. Lepage, Redesigning lattice QCD, Available from: <hep-lat/9607076>.

[3] S. Capitani, Lattice perturbation theory, Phys. Rep. 382 (2003) 113–302, Available from: <hep-lat/0211036>.

[4] H.D. Trottier, Higher-order perturbation theory for highly-improved actions, Nucl. Phys. Proc. Suppl. 129 (2004) 142–148,

Available from: <hep-lat/0310044>.

[5] G.P. Lepage, P.B. Mackenzie, N.H. Shakespeare, H.D. Trottier, Perturbative two- and three-loop coefficients from large b
Monte-Carlo, Nucl. Phys. Proc. Suppl. 83 (2000) 866–871, Available from: <hep-lat/9910018>.

[6] F. Di Renzo, L. Scorzato, A consistency check for renormalons in lattice gauge theory: b�10 contributions to the SU(3) plaquette,

JHEP 10 (2001) 038, Available from: <hep-lat/0011067>.

[7] R. Horsley, P.E.L. Rakow, G. Schierholz, Separating perturbative and non-perturbative contributions to the plaquette, Nucl.

Phys. Proc. Suppl. 106 (2002) 870–872, Available from: <hep-lat/0110210>.

[8] H.D. Trottier, N.H. Shakespeare, G.P. Lepage, P.B. Mackenzie, Perturbative expansions from Monte-Carlo simulations at weak

coupling: Wilson loops and the static-quark self- energy, Phys. Rev. D 65 (2002) 094502, Available from: <hep-lat/0111028>.

[9] A. Hart, R.R. Horgan, L.C. Storoni, Perturbation theory vs. simulation for tadpole improvement factors in pure gauge theories,

Phys. Rev. D 70 (2004) 034501, Available from: <hep-lat/0402033>.

[10] G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys. 27 (1978) 192.

[11] J.A.M. Vermaseren, New features of FORM, Available from: <math-ph/0010025>.

[12] M. Lüscher, P. Weisz, Efficient numerical techniques for perturbative lattice gauge theory computations, Nucl. Phys. B 266 (1986)

309.

[13] M.A. Nobes, H.D. Trottier, G.P. Lepage, Q. Mason, Second order perturbation theory for improved gluon and staggered quark

actions, Nucl. Phys. Proc. Suppl. 106 (2002) 838–840, Available from: <hep-lat/0110051>.

[14] M.A. Nobes, H. Trottier, One loop renormalization of Fermilab fermions, Nucl. Phys. Proc. Suppl. 119 (2003) 461–463, Available

from: <hep-lat/0209017>.

[15] M.A. Nobes, H.D. Trottier, Progress in automated perturbation theory for heavy quark physics, Nucl. Phys. Proc. Suppl. 129

(2004) 355–357, Available from: <hep-lat/0309086>.

[16] B. Alles, M. Campostrini, A. Feo, H. Panagopoulos, Lattice perturbation theory by computer algebra: a three loop result for the

topological susceptibility, Nucl. Phys. B 413 (1994) 553–566, Available from: <hep-lat/9301012>.

[17] M. Luscher, P. Weisz, On-shell improved lattice gauge theories, Commun. Math. Phys. 97 (1985) 59.

[18] M. Lüscher, P. Weisz, Computation of the action for on-shell improved lattice gauge theories at weak coupling, Phys. Lett. B 158

(1985) 250.

[19] G.M. de Divitiis, R. Petronzio, N. Tantalo, On the discretization of physical momenta in lattice QCD, Phys. Lett. B 595 (2004)

408–413, Available from: <hep-lat/0405002>.

[20] I.T. Drummond, A. Hart, R.R. Horgan, L.C. Storoni, One loop calculation of the renormalised anisotropy for improved

anisotropic gluon actions on a lattice, Phys. Rev. D 66 (2002) 094509, Available from: <hep-lat/0208010>.

[21] I.T. Drummond, A. Hart, R.R. Horgan, L.C. Storoni, The contribution of OðaÞ radiative corrections to the renormalised

anisotropy and application to general tadpole improvement schemes, Phys. Rev. D 68 (2003) 057501, Available from: <hep-lat/

0307010>.

[22] I.T. Drummond, A. Hart, R.R. Horgan, L.C. Storoni, Lattice perturbation theory for gluonic and fermionic actions, Nucl. Phys.

Proc. Suppl. 119 (2003) 470–475, Available from: <hep-lat/0209130>.

[23] A. Gray, A. Hart, G. von Hippel, R. Horgan, S-wave QCD/NRQCD matching for the vector annihilation current at Oðasv2Þ (in
preparation).

[24] Automatic differentiation packages are discussed at http://www.autodiff.org.

http://www.autodiff.org

A. Hart et al. / Journal of Computational Physics 209 (2005) 340–353 353
[25] E. Follana, A. Hart, C.T.H. Davies, The index theorem and universality properties of the low-lying eigenvalues of improved

staggered quarks, Phys. Rev. Lett. 93 (2004) 241601, Available from: <hep-lat/0406010>.

[26] Available from: <http://www.python.org>.

[27] G.P. Lepage, P.B. Mackenzie, On the viability of lattice perturbation theory, Phys. Rev. D 48 (1993) 2250–2264, Available from:

<hep-lat/9209022>.

[28] G. von Hippel et al. (in progress).

[29] F. Di Renzo, L. Scorzato, Numerical stochastic perturbation theory for full QCD, JHEP 0410 (2004) 73, Available from:

<hep-lat/0410010>.

http://www.python.org

	Automatically generating Feynman rules for improved lattice field theories
	Introduction
	The lattice
	Matter fields
	Realistic actions: the fermion sector
	Realistic actions: the gluon sector
	Diagram differentiation
	Recursive path definitions

	An expansion algorithm
	A practical implementation
	Conclusions
	Acknowledgments
	Spin algebra
	Pattern lists
	Entity algebra
	References

